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scaling study 
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700009. India 
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Abstract. A percolation model, spiral percolation, in which a rotational constraint is 
operative is studied by the finite-size scaling method. The critical percolation probability 
p, and the critical exponents v. 8, y, 7, m and also the fractal dimension D of the spanning 
cluster are determined. Evidence is obtained far a sealing form of the cluster distribution 
function. 

1. Introduction 

The effect of external constraints on the percolation process has been mainly studied 
through a model of directed percolation (Kinzel 1983). In directed percolation a global 
bias constrains the flow in particular directions, say, only upwards and towards the 
right. The percolation cluster grows in the preferred directions leading to anisotropic 
scaling and direction-dependent critical behaviour. Recently, a new type of percolation 
process, spiral percolation, has been suggested (Ray and Bose 1988). In this model, 
the spiral percolation paths are defined on the spanning cluster generated in undirected 
percolation. Each step of a percolation path proceeds either straight or in a specific 
rotational direction, say clockwise. Spiral percolation occurs if a cluster obeying the 
rotational constraint mentioned spans the underlying undirected cluster. Monte Carlo 
simulation, assuming a finite-size scaling hypothesis, has been performed on the square 
lattice for lattice size up to 60 x 60 to determine the spiral percolation threshold pc  and 
the correlation length exponent v,. The model as defined describes spiral percolation 
on an undirected spanning cluster embedded in a square lattice. In this paper, we 
study spiral percolation directly on the square lattice, the percolation paths obeying 
the rotational constraint as in the case of the previous model. We present the results 
of a finite-size scaling study of spiral percolation in the critical region for lattice size 
up to 140x 140. In section 2 we describe the finite-size scaling theory of percolation 
and the procedure followed by us for calculating the various critical quantities. Section 
3 contains a description of the results obtained. Section 4 gives a discussion of these 
results. 

2. Finite-size scaling method 

We consider spiral site percolation on a square lattice of size L X  L. The rotational 
constraint allows the percolation cluster to grow either in the forward or in the clockwise 
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direction. The spiral percolation threshold p , ( L )  is determined by the binary search 
method (Hoshen and Kopelman 1976). We start from a central site of the lattice which 
is called the origin. Initially, from the origin, one can proceed in any one of the four 
possible directions. The nearest-neighbour ( N N )  sites in these directions are occupied 
with probability p by using a random number generator. With each occupied site a 
variable JVISIT(IV, IOCC) is associated, IOCC is the site index and 1, the direction 
index. The sites of the lattice are numbered according to a particular sequence; the 
site index is the number associated with a site. A site can be reached from four directions 
south, west, north and east. The corresponding direction indices are 1, 2, 3 and 4 
(figure l (a) ) .  The rotational constraint implies the following: if a site has direction 
index 1, then occupy, with probability p ,  only those of the NNS which are towards the 
north and east of the site. 
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Figure 1. ( a )  Direction indices of a site corresponding to the four different directions from 
which the site can be reached. ( b )  An example ora  spiral site cluster on the square lattice. 
The arrows on the bands indicate the allowed spiral directions of Row from Site i. 

Initially, the JVISIT variable is assigned the value zero for all sites. As soon as a 
site is occupied, the corresponding JVISIT variable is given the value IV where IV is 
the direction index corresponding to the direction from which the site is occupied. All 
growing sites are put on a list and the walk-search is carried out for each. The growth 
of a cluster of occupied sites stops only when all the perimeter sites are unavailable 
for occupation. Figure l ( b )  shows a typical cluster grown obeying the rotational 
constraint. Due to the nature of the constraint, loops are an essential feature of the 
growing spirally connected cluster. In our computer algorithm, the possibility of loop 
formation while growing a cluster is taken care of in the following manner: we refer 
to figure 1( b). The site i is the origin. In the first step when j is occupied, JVISIT( 1, j )  = 1 .  
Next time j is approached (from site m), the computer algorithm checks whether 
JVISIT(4, j )  is zero. If it is non-zero then the site j has been approached from the east 
previously and so cannot be occupied again. For the particular cluster in figure l ( b ) ,  
since JVISIT(4, j ) = O ,  the site j is reoccupied and JVISIT(4,j) assigned the value 4. 
Thus loop formation and continuation of cluster growth are possible. 

Following the binary search method we start growing a cluster with a particular 
value of p, say p o .  If the cluster grown spans (does not span) the lattice in either the 
east-west or north-south direction, po is decreased (increased) by a small amount. The 
same random number sequence is then used to get estimates p , ( L )  and p , (L)  which 
bound an interval containing the true threshold value p ( L ) .  By successive binary 
chopping of this interval one can determine pc( L )  with a specified accuracy. The whole 
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process is then repeated N times ( N  x L x L is of the order of 106-107) using different 
random number sequences. The average value ( pc( L ) )  of all the estimates obtained is 
taken as an estimate for the percolation threshold. The spread in the estimates is related 
to the correlation length exponent U (correlation length [ - I  p - p c J ”  as p + pc)  through 
the finite-size scaling formula (Levinshtein et a1 1976, Reynolds e f  a1 1980): 

A ( L )  = [( P : ( L ) ) - ( P , ( L ) ) ~ ] ’ / ~ -  L-l’”. (1) 
p,(m),  the percolation threshold in the limit of an infinitely large lattice is obtained 
through the finite-size scaling formula 

IPAm) --(PC(L))l - C””. (2) 
Equations ( I )  and (2) determine the exponent U and p , (m) .  

To determine other critical exponents we proceed as follows. For a particular lattice 
size L x L ,  we choose p to be equal to ( p c ( L ) ) .  Ten thousand clusters are grown for 
this value of p and the distribution of clusters of various sizes determined. Clusters 
of neighbouring sizes are counted in one bin. For example the ith bin contains 
clusters of sizes in the range 2’- ’ - (2’ - l ) .  Let n , ( p )  be the number of clusters of size 
s per site of the lattice. For an infinitely large lattice pc  has a sharp unique value and 
in the critical region p + p c ,  one can define the following critical quantities: 

average cluster size x -E s2n7 - Ip - p p .  (3 )  

Probability P that a site belongs to the infinite (spanning) cluster goes as 

p - ( P  - p Y .  (4) 
In a finite system, any one of the quantities defined above depends not only on p but 
also on the linear dimension L of the lattice. True critical behaviour occurs only in 
the limit of infinitely large lattices hut an estimate of the critical exponents, e.g. p and 
y, can be obtained from the studies of finite systems by assuming a finite-size scaling 
hypothesis (Stauffer 1985) which leads to the formula 

A =  L - ” ’ ” F [ ( p - p , ) L 1 / ” ]  ( 5 )  

where A is a quantity which becomes critical, A-  Ip - p J ,  in the asymptotic limit. A, 
for example, can be either x or P. The function F is a suitable scaling function. At 
p = p c  the quantity A varies as L-”/’. This result can he used to determine the average 
cluster size exponent y by calculating A for various values of L and using the value 
of v obtained from equation (1). The exponent p can also be determined in the same 
manner. For a particular lattice size L and for p = ( p J L ) ) ,  let the size of the largest 
cluster which spans the lattice he S,. The spanning cluster is a fractal with fractal 
dimension D defined by 

s,- LD. (6) 

D = d - $ / v  (7) 

The fractal dimension D can again be written as 

since P = S,/ Ld in (4). From equation (6)  the fractal dimension D can be determined 
and from equation (7), knowing 0, v, the value of p can be obtained. 

From scaling theory which is supposed to be valid in the critical region, n,, the 
number of clusters of size s per site of the lattice is assumed to scale as (Stauffer 1985) 
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for large clusters near the percolation threshold. T and U are exponents to be determined 
numerically. All the known percolation exponents are expressed in terms of these two 
exponents T and U. For example, 
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y = ( 3 - T ) / U  and p = ( T  - 2 ) / U .  (9) 
A verification of the scaling function form in (8) is possible by plotting n , ( p ) / n , ( p , )  
against ( p - p J s " .  If the scaling form is true, then for sufficiently large clusters and 
for different values of p,  the data should collapse on to a single curve. Once y and p 
are known through finite-size scaling analysis of data obtained, the exponent U can 
be calculated from (9) and a test of the scaling form as given in (8) can be undertaken. 
In the next section, we give the values of p,(co)  and the different critical exponents 
obtained by us using the method and formulae mentioned in this section. We also give 
the result of the test of scaling theory. 

3. Results 

The average value of the percolation threshold ( p , ( L ) )  and the spread A(L) in the 
estimates have been obtained for lattice size L x L with L ranging from 50-140 in steps 
of 10. The data are listed in table 1. In figure 2 we have plotted -logA(L) against 

Table 1. Data for (pc(L)) ,  D(L)  and (S,) for all Lx  L lattices and over N realizations. 

50 
60 
70 
80 
90 

100 
110 
120 
130 
140 

7000 
5000 
4500 
4000 
3500 
3000 
3000 
3000 
3000 
3000 

0.7039 
0.7053 
0.7067 
0.7074 
0.7083 
0.7083 
0.7093 
0.7093 
0.7101 
0.7107 

0.0210 
0.0193 
0.0180 
0.0170 
0.0165 
0.0157 
0.0151 
0.0147 
0.0143 
0.0139 

713.398 
994.024 

1325.155 
1745.984 
2146.475 
2641.420 
3199.691 
3731.463 
4452.223 
5036.832 

1 
1 .IO 1.90 2 . I O  

l og lLI  

Figure 2. A plot of -logA(L) against log(L) far a square lattice of size L x  L. The dope 
of the straight line giver 11 Y = 0.396. 



Percolation under rotational constraint 2371 

log(L) which is a straight line in agreement with equation (1). The slope of the straight 
line gives the reciprocal of the correlation length exponent U, I /  Y = 0.396. For undirected 
percolation, l /v=0.75.  In figure 3, we have plotted ( p , ( L ) )  against L-"" using the 
value obtained for U. The plot is approximately a straight line and from equation (2) 
we obtained the value of p,(m) =0.723*0.001. The value of Y obtained is 2.53*0.02. 
The errors in the values of p,(m) and Y have been obtained following the procedure 
outlined by Levinshtein et a1 (1976). Figure 4 shows a plot of the logarithm of the 

The slope of the straight line gives the fractal dimension D. The value of D obtained 
is D = 1.956*0.009. Using equation (7)  and putting the Euclidean dimension d = 2, 

^. ._m"~ Î..̂ .nr ":..e "* .La "-*--I"&:-- .l.---L-l> - - I  - I r ,\ "-":.."* ,,."I I \ a"C.agr; Jp"""L"g C l U U L C l  DlLC a, L l l b  p ' c l r Y I ' l L I " , '  I,,,~is,,"I" Y E -  ,Y<,L,, ngarrrw nus,-,. 

0.70 

t 

- 

1 
0 04 0 08 0 12 0 16 0 20 

L- lh 

Figure 3. A plot of ( p , ( L ) )  against L-'!". The intercept on the vertical axis gives p,(m) = 
0.723 10.001. 

4.20 1 

I 
1.70 1.90 2 10 

lOQ(L1 

Figure4. Aplot oflog(S,)againstlog(L)atp=(p.(L))where(S~istheaveragespanning 
cluster size. The slope of the straight line gives the fractal dimension D of the spanning 
clusfer, D = 1.956-tO.009. 
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the ratio of exponents p l u  is obtained as p/v=O.044*0.009. In figure 5 we have 
plotted the logarithm of the average cluster size excluding the spanning cluster (equation 
(3)) against log(L) at the percolation threshold. The plot obtained is a straight line. 
According to the finite-size scaling formula (equation ( 5 ) ) ,  the slope of the straight 
line gives the ratio of exponents y /  U, y /  Y = 2.055 * 0.025. The errors quoted for D and 
y / u  are the standard least-squares fit errors taking into account the statistical error of 
each single data point. A direct estimate of the exponent T can be obtained in the 
following manner. Instead of using the scaling form given in equation (8): we use a 
modified scaling expression (Dhar and Barma 1981). Let P , ( p )  be the probability that 
a cluster of s sites is obtained ( P s ( p ) Z s n , ( p ) ) .  If F , ( p )  is the probability that the 
number of sites in a cluster is strictly greater than s, then 
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In the critical region p e p c ,  the probabilities P , ( p )  are expected to obey the scaling 
behaviour 

P , ( p ) -  s-'+'f[(P-Pc)s"I (11) 

wheref(x) is the scaling function. From equations (10) and ( I l ) ,  F , ( p )  has the scaling 
form 

F,(p)-s-'+Z ~ [ ( P - P J ~ " ]  (12) 

where the function h ( x )  may be obtained from f ( x )  by quadrature. This particular 
analysis is carried out for only one lattice size, in our case the size is 140 x 140. In 
figure 6, -In F , ( p )  has been plotted against In(s) at the percolation threshold. The 
plot is a straight line from the slope of which 7 - 2 ,  hence T is obtained. The value of 
7 is. ~=?.0?f0.0!. The errer in the w!ce of T is determined nsing the mmimum 
likelihood method (Dhar and Barma 1981). From equation (9), knowing any two of 
the exponents T,  y and p, the exponent U can be calculated. The value of U obtained 

Figure 5. A plot of log(Z,s'n,j against log(Lj at p=(pc(Lj) .  The slope giver ~ I Y =  
2.055 i 0.025. 
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is U =O.l9*0.02. The test of the scaling form given in equation (8) has been done for 
a lattice size 140 x 140 with pc equal to (p , (  L)). For n.( p ) ,  n."( pJ, the number of clusters 
per site of the lattice in a particular bin has been used, the size s being the geometric 
mean of the bounding cluster sizes of the bin. Figure 7 shows a plot of n , ( p ) / n , ( p , )  

t 
I U 

4 . 0  . - - ; 9 1 ,  i m  T;o ~~~~~, 

2.0  . 
0 

v 

-0.30 -0.10 0.10 
I p  .P<lSV 

Figure 7. A plot o f  n , ( p ) / n , (  p.) against ( p  -p,)s" for- = 0.19. Data forp -P.=O.Ol (open 
triangle), -0.01 (full triangle), -0.03 (open diamond), -0.04 (full rectangle), -0.045 (star), 
-0.05 (full circle), -0.525 (open circle), -0.055 (inverted open triangle) fall roughly on 
to a single curve in agreement with scaling theory predictions. The circled cross denotes 
the location of the point (0, I ) .  
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against the scaling variable ( p - p , ) s "  for nine different values of p. The data for 
different values of p have been marked by different symbols, Ip -pel being in the range 
0.01-0.055. The circled cross denotes the location of the point (0, 1). Finally in table 
2 we list the values of all the exponents we have obtained through finite-size scaling 
analysis. For the sake of comparison we also list the values of the exponents for 
undirected percolation. 
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Table 2. Numerical values of the critical exponents v. p, y, I, v using finite-size scaling 
theory. The table also gives the values of the exponents for undirected percolation. The 
rational numbers are (presumably) exact results (Stauffer 1985). 

Percolation 
model Y 0 Y 7 (r 

Spiral 2.53 0.11 5.19 2.02 0.19 
a 0 2  +0.01 +0.03 10.01 *0.02 

Undirected 413 5/36 43/18 187191 36/91 

4. Discussion 

The values of the critical exponents obtained and listed in table 2 are widely different 
from the corresponding values in the cases of undirected and directed percolation. 
One can conclude that spiral or rotationally constrained percolation belongs to a 
different universality class. One interesting feature of spiral percolation is that the 
spanning cluster is nearly compact, the fractal dimension D being 1.956 *0.009 whereas 
the spanning cluster in other types of percolation is highly fragmented with the fractal 
dimension significantly lower than the Euclidean dimension. The fact that rotational 
constraint gives rise to a robust, compact structure has already been noted (Bose and 
Ray 1987) in a study on spiral lattice site animals. The rotational constraint has the 
effect equivalent to that of a centripetal force inhibiting fragmented outward growth 
and giving rise to a drawn-in, nearly compact structure. The use of finite-size scaling 
theory is justified by good agreement of data obtained numerically with scaling theory 
formulae (figures 2-6). Evidence for a scaling form of the cluster distribution function 
is obtained in figure 7 where data for different p have collapsed, though not very 
sharply, onto a single curve. A cleaner collapse is expected only for a larger lattice 
size. Figure 7 clearly shows that the maximum is located below the percolation 
threshold. This is also true in the case of undirected percolation (Stauffer 1985); a 
symmetric scaling function is obtained only in the case of percolation on a Bethe 
lattice. The value of the exponent T listed in table 2 has been obtained from equation 
(12). If the values of p, y shown in table 2 are substituted in equation (9), the value 
of T comes out to be T =  2.0201 which agrees closely with the value of T quoted in 
table 2. This close agreement is a proof of the validity of the scaling equations given 
in (9). Spiral percolation is similar to directed percolation since for both the models 
a directional constraint is operative. In the first case the directional constraint is 
rotational in nature and in the second case percolation occurs only in certain specific 
directions. The critical exponents for the two models have, however, different values. 
Different directional constraints thus lead to different universality classes. As mentioned 



Percolation under rotational constraint 2315 

in section 1, Ray and Bose (1988) have studied spiral percolation on an undirected 
percolation spanning cluster for lattice size up to 60 x 60. The value of the correlation 
length exponent U, obtained is U, = 1.404iO.012. This value differs considerably from 
the value of Y obtained by us for spiral percolation on the square lattice. In the previous 
model both the maximum lattice size and the number of Monte Carlo realizations over 
which averages are taken are smaller than those in the present simulation. The common 
lattice sizes used in the two studies are L = 50 and 60. The data for these two sizes 
indicate a significant difference in the values of U. and Y. Thus the large discrepancy 
in the values of the correlation length exponent is not due to significant correction to 
scaling as a function of lattice size but rather leads to the conjecture that the two 
models belong to different universality classes. Spiral percolation is expected to occur 
in disordered systems when a rotational force field is present. An example of rotational 
constraint is the motion of a charged particle in a plane in the presence of a magnetic 
field perpendicular to the plane. A cycloidal trajectory as in the presence of crossed 
electric and magnetic fields is an example of a path traced out under rotational 
constraint. Studies along these lines are in progress and the results will be reported 
elsewhere. 
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